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Storage capacity of two-dimensional neural networks
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We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The
grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the
state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromag-
netic Ising model. We also investigate the energy landscape around them and the stability of the pure retrieval
state. Taking into account the qualitative features of the phase diagrams obtained by Nishimori, Whyte, and
Sherrington@Phys. Rev. E51, 3628 ~1995!#, we conclude that the network cannot retrieve more than three
patterns.
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I. INTRODUCTION

The Hopfield model@1# is one of the simplest mathemat
cal models which explains associative memory. This mo
is characterized by binary state neurons and each neuro
represented by Ising spin. In this model system, arbitrary
neurons interact with each othervia the so-called Hebb rule
The Hebb rule is one of the standard learning rules of
patternsj i

m ( i 51, . . . ,N; m51, . . . ,p) and determines the
strength of the interactionJi j between thei and j th neurons,
say,Si andSj , as

Ji j 5
1

N (
m

j i
mj j

m , ~1!

where m means the number of embedded patterns anN
denotes the number of neurons. These features have
deeply investigated by statistical mechanics@2,3#. Actually,
up to now, various extensions and generalizations of
Hopfield model were proposed and these properties were
vestigated from a statistical mechanical point of view~see,
for example@3#!. However, little is known about the prope
ties of the Hopfield model in which the length of interactio
Ji j is restricted to the nearest-neighbor neurons. By the a
ogy to the spin system in statistical mechanics, we call
type of the Hopfield model thefinite-dimensional Hopfield
model. Inspired by the study of Nishimoriet al. @4#, in this
paper, we consider the finite-dimensional Hopfield mo
storing structured patterns. In general, it is hard to anal
such finite-dimensional systems explicitly. However, one c
derive several rigorous results of thermodynamic proper
of the system with the assistance of the Pierls arguments
the gauge transformations@4#. Although the qualitative fea-
tures of the phase diagrams of the system became clea
these analyses, nobody has yet succeeded in deriving
quantitative behavior at all. In this paper, we analyze
storage capacity of the system quantitatively. We restrict o
selves to the case of two-dimensional system on the sq
lattice.

This paper is organized as follows. In Sec. II, we expla
our model system. In Sec. III, we briefly review the qualit
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tive features of the phase diagram obtained by Nishim
et al. @4#. In Sec. IV, we analyze the storage capacity of o
model system. Section V is devoted to discussion of all
results that we obtain.

II. DEFINITION OF THE SYSTEM

In this section, we define our model systems. The Ham
tonian of the system is given as

H52(̂
i j &

Ji j SiSj , ~2!

whereSi ( i 51, . . . ,N) are the states of the neuron takin
binary value61, andJi j is the strength of the interactio
betweenSi andSj . The summation(^ i j & appearing in Eq.~2!
runs over nearest-neighbor neurons on a square lattice
chose theshort-rangeHebb rule as an interaction which i
given by

Ji j 5
1

Ap
(
m51

p

j i
mj j

m ~3!

for the nearest-neighbor siteŝi j & and Ji j 50 otherwise.
Here, p is the number of embedded patterns andj i

m5
61 (m51, . . . ,p; i 51, . . . ,N). Let us consider the prob
ability distribution of a set of patterns$j i

m%([$j i
mu i

51, . . . ,N;m51, . . . ,p%). We suppose that the probabilit
that arbitrary nearest-neighbor sites of themth pattern arej i

m

andj j
m , respectively, is proportional to

expS J0

Ap
j i

mj j
mD , ~4!

where the parameterJ0 controls the degree of the correlatio
between arbitrary nearest-neighbor sites. Let us writeP(j i

m

5j j
m) and P(j i

m52j j
m) as the probability ofj i

m5j j
m and

j i
m52j j

m , respectively. Then, the ratio of the former to th
later is given by

P~j i
m5j j

m!

P~j i
m52j j

m!
5expS 2J0

Ap
D . ~5!
©2001 The American Physical Society24-1
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SHINSUKE KOYAMA PHYSICAL REVIEW E 65 016124
For the case ofJ050, Eq. ~5! becomesP(j i
m5j j

m)5P(j i
m

52j j
m). Hence there is no correlation betweeni and j sites

of mth patterns and embedded patterns correspond to ‘‘
dom patterns.’’ On the other hand, for the case ofJ0→`, we
obtainP(j i

m52j j
m)50. Namely, the value ofj i

m is same as
that of j j

m with probability one. Applying Eq.~4! to all
nearest-neighbor pairŝi j &, we obtain the probability distri-
bution for themth pattern as

1

Z0S J0

Ap
D expS J0

Ap
(̂
i j &

j i
mj j

mD , ~6!

whereZ0(J0 /Ap) is the normalization factor given by

Z0S J0

Ap
D 5(

$j i %
expS J0

Ap
(̂
i j &

j ij j D . ~7!

Supposing that each pattern is generated by Eq.~6! indepen-
dently, a set of embedded patterns$j i

m% is generated by the
following probability distribution:

P~$j i
m%!5c )

m51

p

expS J0

Ap
(̂
i j &

j i
mj j

mD . ~8!

Here, the normalization factorc is given by$Z0(J0 /Ap)%p.
Note that Eq.~6! corresponds to the Boltzmann weight of th
two-dimensional ferromagnetic Ising model on the squ
lattice whose interaction is given by 1/Ap at temperature
1/J0. Hence embedded patterns are the same as snapsh
equilibrium Monte Carlo simulations for it. This Ising mod
was explicitly solved in@5# and it is known that there is a
critical point atK5Kc50.44, whereK denotes the ratio o
the temperature to the strength of the interaction. This mo
has a ferromagnetic solution forJ0 /Ap.Kc and a paramag
netic solution forJ0 /Ap,Kc . From this fact, in our mode
system, embedded patterns have a long-range order foJ0

.KcAp, on the other hand, there is no long-range correlat
for J0,KcAp. Figure 1 shows typical three examples of e
bedded patterns.

In the next section, we briefly review the features of t
phase diagrams of our model systems obtained by Nishim
et al. @4#.

FIG. 1. Typical examples of embedded patterns. The size
patterns is 1003100. From the left to the right, the values of p
rameterJ0 /Ap are 0.10, 0.42, and 0.60.
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III. GENERIC QUALITATIVE PHASE DIAGRAM

Before we explain our analysis of maximum number
embedded patterns, in this section, we briefly review the
sults by Nishimori et al. @4#. Note that their treatments
namely, the gauge transformations and the Peierls argum
are applied to not only the two-dimensional systems but a
the systems in arbitrary dimension. Figure 2 shows the qu
tative phase diagram with axes of temperatureT and a pa-
rameterJ0 controlling the structure of patterns for a fixe
value ofp. In general, this system has three phases: param
netic (P), ferromagnetic (F), and retrieval~R! @or spin glass#
phases. Each phase is characterized by the following th
order parameters:

q5
1

N (
i 51

N

^Si&
2, ~9!

mF5
1

N (
i 51

N

^Si&, ~10!

mR5
1

N (
i 51

N

j i
m^Si&, ~11!

where ^•••& means thermodynamic average. The abo
three-order parametersq, mF , and mR represent the
Edwards-Anderson spin-glass order parameter, the ferrom
netic order parameter, and the overlap between themth pat-
tern and the network state$Si%, respectively. The paramag
netic, ferromagnetic, retrieval, and spin-glass phase
characterized by the above three-order parameters aq
5mF5mR50; q.0,mF.0; q.0,mR.0, and q.0,mF
5mR50, respectively.

Applying the gauge transformations to this system,
obtain the internal energy@^E&# and the overlap@mR# on the
lines b(51/T)5J0 in the phase diagram as follows:

@^E&#5pE0S b

Ap
D , ~12!

f

FIG. 2. The qualitative phase diagram with axes of tempera
T and a parameterJ0 controlling the structure of patterns. The valu
of p is fixed.~a! For smallp, there are three phases: paramagneticP,
retrievalR, and ferromagnetic with finite overlapF8. ~b! For large
p, there appears a ferromagnetic phase without retrieval ordeF,
and the retrieval phase in the small-p case is replaced by the spin
glass phase.
4-2
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STORAGE CAPACITY OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 016124
@mR#5m0S b

Ap
D , ~13!

whereE0(b/Ap) is the internal energy of the ferromagnet
Ising model corresponding to the partition functio
Z0(b/Ap), andm0(b/Ap) is the spontaneous magnetizatio
of the same model. Here, the expression of@•••# means the
average over the distribution~8!. Both E0(b/Ap) and
m0(b/Ap) generally have singularities at some critical po
when spatial dimensionality exceeds one. Let us suppose
b/Ap5Kc is the critical point. Then Eqs.~12! and~13! mean
that the internal energy and the overlap of our system h
the same singularity atb/Ap5Kc . This implies a phase
transition and the boundary between@mR#Þ0 and@mR#50
crosses this point on the lineb(51/T)5J0 ~it is denoted by
M in Fig. 2!. We should notice that this point is also th
critical point of the embedded patterns.

When the value ofp is small, a typical phase diagram
given by Fig. 2~a!. In this case, it is possible that the retriev
phase exists in the region denoted byR. In the same figure
the regionF8 is the ferromagnetic phase with finite overla
It is important to notice that this system is not meaningful
an associative memory forJ0.KcAp, since embedded pat
terns have a long-range ferromagnetic order, as shown on
right-hand side of Fig. 1, and patterns become correla
each other. With this fact in mind, we do not regard th
region as a retrieval phase. When the value ofp increases,
the critical point J05KcAp moves to right. On the othe
hand, by using the Peierls argument, the ferromagnetic p
still exists in almost the same region. Taking those facts i
account, there exists a critical number of patternspc above
which (p.pc) the ferromagnetic phase is split into two r
gions, that is, the ferromagnetic phase with finite over
(F8) and the ferromagnetic phase without retrieval order~F!.
At the same time, the retrieval phase in the small-p case is
replaced by the spin-glass phase because the region wi
nite overlap is limited toF8 @Fig. 2~b!#. In summary, there
exists a critical number of patternspc below which (p
,pc) the retrieval phase exists there, if any, while forp
.pc the retrieval phase vanishes and this network can
retrieve embedded patterns.

However, the value ofpc is not yet evaluated quantita
tively at all in @4#. Following this section, we investigate i
especially in the case of a two-dimensional system on
square lattice.

IV. ANALYSIS OF THE SYSTEM

A. The case ofpÄ1

We begin with the case ofp51. In this case, the system
identical to the ferromagnetic Ising model and the retrie
solution of the system corresponds to the ferromagnetic
lution of the ferromagnetic Ising model. In the case of t
square lattice, the critical temperature of the ferromagn
Ising model isTc52.27, therefore, the system has a retrie
solution atT,Tc .
01612
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B. The case ofpÐ3

We next analyze the case ofp>3. There is a good evi-
dence to show that the retrieval phase does not exist for
case. Let us start by investigating if there is a state which
a smaller energy than the retrieval state. SubstitutingSi

5j i
1 ~for all i ) into Eq. ~2! and averaging it over the distri

bution ~8!, we obtain the energy per neuron of the pure
trieval state

@ER#5
1

N F2
1

Ap
(̂
i j &

(
m51

p

j i
mj j

mj i
1j j

1G
52

2

Ap
H 11~p21!C1S J0

Ap
D 2J , ~14!

whereC1(J0 /Ap) is the nearest-neighbor correlation fun
tion of the ferromagnetic Ising model on the square latti
The explicit form ofC1 is

C1S J0

Ap
D 5

1

Z0S J0

Ap
D (

$j i %
j ij j expS J0

Ap
(̂
i j &

j ij j D . ~15!

We also rewrite the energy per neuron of the pure ferrom
netic state in terms ofC1(J0 /Ap). SubstitutingSi51 ~for all
i ) into Eq. ~2! and averaging it over the distribution~8!, we
obtain

@EF#5
1

N F2
1

Ap
(̂
i j &

(
m51

p

j i
mj j

mG522ApC1S J0

Ap
D .

~16!

We next investigate the properties of the functi
C1(J0 /Ap). It is written in terms of the partition function~7!
as follows:

C1S J0

Ap
D 5

1

2N

] logZ0~J0 /Ap!

]~J0 /Ap!
. ~17!

It is important to bear in mind that logZ0(J0 /Ap) is explicitly
solved in@5# as follows:

1

N
logZ0S J0

Ap
D 5 logS 2 cosh

2J0

Ap
D

1
1

2p2E0

pE
0

p

log~124k cosv1v2!

3dv1 dv2 , ~18!

where

2k5
tanh~2J0 /Ap!

cosh~2J0 /Ap!
. ~19!

Substituting 2 coshm51/2kucosv1u into Eq. ~18! and using
4-3
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E
0

2p

log~2 coshm22 cosv!dv52pm, ~20!

m5cosh21 y5 log~y1Ay221!, y5
1

4kucosv1u
,

~21!

we obtain

1

N
logZ0S J0

Ap
D 5 logS 2 cosh

2J0

Ap
D

1
1

2pE0

p

log
1

2
~11A12~4k!2 sin2 w!dw.

~22!

Substituting Eq.~22! into the right-hand side of Eq.~17!,
explicit solution ofC1(J0 /Ap) is written by

C1S J0

Ap
D 5

1

2
coth

2J0

Ap
•S 11

2

p
k18L D , ~23!

whereL is the complete elliptic integral, namely,

L5E
0

p/2 dw

A12k1
2 sin2 w

, ~24!

with k154k and

k1852 tanh2
2J0

Ap
21. ~25!

Figure 3 shows the shape of Eq.~23!. From Eqs.~14!, ~16!,
and~23!, we obtain rigorous values of grand state energie
the pure retrieval and the pure ferromagnetic states.

Now we calculate the condition that the pure ferroma
netic state has a smaller energy than the retrieval state, th
to say, the condition for@ER#.@EF#. We rewrite this in-
equality by using Eqs.~14! and ~16!, then we obtain

1

p21
,C1S J0

Ap
D ,1. ~26!

FIG. 3. The shape of the correlation functionC1(x).
01612
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As C1
21 is a monotonically increasing function andC1

21(1)
5` ~see Fig. 3!, Eq. ~26! leads to

J0

Ap
.C1

21S 1

p21D[U, ~27!

whereC1
21 denotes the inverse of the functionC1. We find

that the pure ferromagnetic state has a smaller energy
the pure retrieval one as long as this condition is satisfied
J0 is finite, p>3 must be satisfied becauseC1

21 is a mono-
tonically increasing function andC1

21(1)5`. Further, it is
easy to confirm the following inequality:

]~@EF#2@ER# !

]p
,0. ~28!

Taking into account@EF#2@ER#,0 under the condition~27!
andp>3, @EF# gets smaller relatively asp gets larger. As a
result, the pure ferromagnetic state has a smaller energy
the pure retrieval one forT50, J0.UAp, and p>3. The
value ofU is 0.38 forp53, andU,0.38 for p.3 because
of the monotonically increasing property ofC1

21. Note that
U is always less thanKc50.44.

We investigate the energy landscape around the pure
trieval state further. Let us calculate the energy increase
interaction when the state changes from the pure retrie
state. The energy stored in an interaction is given by

2Ji j SiSj52
1

Ap
(
m51

p

j i
mj j

mSiSj . ~29!

SubstitutingSi5j i
1 , Sj5j j

1 into Eq. ~29!, we obtain the en-
ergy stored between thei th and j th neurons of the network
retrieving 1th pattern completely. In the same way, substi
ing Si5j i

1 , Sj52j j
1 into Eq. ~29! gives the energy of the

interaction for the case where thej th neuron changes from
the retrieval state. Subtracting the former from the latter, a
averaging it over the distribution~8!, we obtain the energy
increase per interaction when the state changes from the
trieval state,

@dER#5F 2

Ap
(
m51

p

j i
mj j

mj i
1j j

1G5
2

Ap
H 11~p21!C1S J0

Ap
D 2J .

~30!

The value of@dER# is always positive, and it is expected th
the energy increases on the average when the state cha
from the pure retrieval state. We estimate the energies of
finite overlap states as follows. Letn be the number of neu
rons whose states are opposite to the retrieval states.
relation betweenn andmR is given by

n

N
5

12mR

2
. ~31!

If n is not large, the number of interactions between
retrieval state and opposite state is expected to be aboun
because the number of nearest-neighbor neurons is 4
4-4
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STORAGE CAPACITY OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 016124
neurons whose states are opposite to the retrieval state
sparsely in almost all cases. Therefore, the energy of
system per neuron whose overlap ismR is expected to be

@EmR
#5@ER#1

4n

N
@dER#5@ER#12~12mR!@dER#.

~32!

Figure 4 shows the result of numerical simulation and co
pares it with Eq.~32!. We set parameter values asp53 and
J0 /Ap50.39 (.U) at the simulation. We generate 105

sample states for each value ofmR and evaluate@EmR
#.

Equation~32! agrees with the result of the simulation ne
mR51, although it does not agree with the simulations
the case of smallmR . This is clearly because the number
interactions between the retrieval state and opposite sta
smaller than 4n for largen. Regardless of it, the energy tend
to increase asmR gets smaller, and the state nearmR51 is
likely the smallest energy among the finite overlap sta
Almost the same argument can be applied to the ferrom
netic state, and the state nearmF51 is the smallest energ
among the ferromagnetic order. Taking into account@ER#
.@EF#, the energy of ferromagnetic order is expected to
smaller than that of retrieval order as long asp>3 andJ0

.UAp are satisfied.
We also investigate the stability of the pure retrieval sta

The variance ofdER is given by

@$D~dER!%2#5@dER
2 #2@dER#2

5
4~p21!

p H 11~p22!C1S J0

Ap
D 2

2~p21!C1S J0

Ap
D 4J . ~33!

Using Eqs.~14! and~33!, the ratio of@dER#2 to this variance
is obtained by

FIG. 4. The average energiesE of the retrieval states with over
lap mR . The parameter values arep53 andJ0Ap50.39. The error
bars are results of the numerical simulation in which the size
network is N51003100, and calculated by averaging of 105

samples. The line shows the result from Eq.~32!.
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@$D~dER!%2#

@dER#2

5

~p21!H 11~p22!C1S J0

Ap
D 2

2~p21!C1S J0

Ap
D 4J

112~p21!C1S J0

Ap
D 2

1~p21!2C1S J0

Ap
D 4 .

~34!

Partially differentiating the above equation byp ~the value of
C1 is fixed!, we obtain the following inequality:

]

]p S @$D~dER!%2#

@dER#2 D .0. ~35!

This means that the more the value ofp gets large, the more
the energy is likely to decrease when the state changes
the retrieval state, although it increases on the avera
Therefore, the pure retrieval state becomes unstable for l
p. We can roughly estimate the value ofp for which the pure
retrieval state gets unstable by

@$D~dER!%2#

@dER#2
.1. ~36!

In Fig. 5, we plot the minimum value ofp that is satisfied
with Eq. ~36!. For example, Eq.~36! is satisfied withp>8
for J0 /Ap50.43. Note that this is probably overestimatin
and the value ofp is likely smaller. We confirm this argumen
in numerical simulations of the dynamics atT50. Figure 6
shows a typical example of how the overlapmR depends on
the Monte Carlo step in computer simulations, in whichN
51003100 andJ0 /Ap50.43. The state of network start
with the embedded pattern itself. In these simulations,
pure retrieval state is already unstable forp53, and the net-

f
FIG. 5. The minimum value ofp that is satisfied with Eq.~36! as

a function of the parameterJ0 /Ap, which determines the structur
of patterns.
4-5
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SHINSUKE KOYAMA PHYSICAL REVIEW E 65 016124
work falls into a certain local minimum nearmR51. This
implies that the pure retrieval state is no longer stable
p>3.

Taking all the above results into account, we show t
there is no retrieval phase ifp>3. As we have seen,U is
always smaller thanKc50.44 for p>3, and the ferromag-
netic state has smaller energy than the retrieval state foJ0

.UAp. Moreover, the pure retrieval state is no longer sta
for p>3. From those results, we conclude that the region
J0.UAp at T50 is not a retrieval phase. Therefore, t
boundary of @mR#50 is prohibited from landing atJ0

,KcAp on theJ0 axis likeL2 in Fig. 7, and it should land a
J05KcAp from pointM vertically likeL1. Hence, there is no
retrieval phase in the regionJ0,KcAp ~for all T) because
the region with finite overlap is limited atJ0.KcAp. As a
result, the phase diagram should be like Fig. 2~b! and the
retrieval phase does not exist for the case ofp>3.

C. The case ofpÄ2

For the case ofp52, Figs. 5 and 6 imply that the pur
retrieval state is stable, although it is possible that there
ists a state, except the ferromagnetic state, whose ener
smaller than that of the retrieval state. Hence, the retrie
state is expected to be a stable or metastable one for
case. However, it is very difficult to conclude whether t
retrieval state has the minimum energy or not, because
Hamiltonian of this system has a very complicated ene
landscape. In order to evaluate the grand state energy o
we should carry out simulated annealing , for example. Ho
ever, up to now, we do not yet have reliable results. This w
be our future problem.

FIG. 6. The typical example of how the overlapmR depends on
the Monte Carlo stept in Monte Carlo simulations atT50. We set
the system size and the parameter asN51003100 andJ0 /Ap
50.43, respectively.
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V. CONCLUSION

In this paper, we investigated the maximum number
embedded patterns in the two-dimensional Hopfield mo
storing structured patterns. As a result, we found that th
exists the retrieval phase forp<2, however, it does not exis
for p>3. In other words, this system cannot retrieve mo
than three patterns. This result agrees with a consideratio
networks with randomly diluted synapses, in whichpc is
proportional to the average connectivity per neuron@6#.
Namely, we can see from this argument that the value ofpc
for our network is finite because the average connectivity
neuron is four~finite number!. However, our result is more
strict than that from this argument.

Moreover,pc52 is satisfied with any value ofJ0, even
the conventional ‘‘random patterns.’’ In addition, it is know
that the storage capacity of the network with spatially cor
lated patterns is lower than that with random patterns. T
implies that the smallness of the value ofpc is due to the
dimensionality two of the network rather than the structu
of embedded patterns. This argument also implies that
though there are several modifications in order to impro
storage capacity with spatially correlated patterns~see@7#,
for example!, these modifications are not expected to be
markable improvements for our model system.

From all the above arguments, we conclude that stor
capacity of associative memory is strongly restricted by
spatial structure of the network.
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FIG. 7. In the case ofp>3, U is smaller thanKcAp and the
region of J0.UAp at T50 is not retrieval phase. Therefore, th
boundary of@mR#50 like L2 is prohibited and it should be likeL1.
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